skip to main content


Search for: All records

Creators/Authors contains: "Bryan, George H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Unsteadiness and horizontal heterogeneities frequently characterize atmospheric motions, especially within convective storms, which are frequently studied using large-eddy simulations (LES). The models of near-surface turbulence employed by atmospheric LES, however, predominantly assume statistically steady and horizontally homogeneous conditions (known as the equilibrium approach). The primary objective of this work is to investigate the potential consequences of such unrealistic assumptions in simulations of tornadoes. Cloud Model 1 (CM1) LES runs are performed using three approaches to model near-surface turbulence: the “semi-slip” boundary condition (which is the most commonly used equilibrium approach), a recently proposed nonequilibrium approach that accounts for some of the effects of turbulence memory, and a nonequilibrium approach based on thin boundary layer equations (TBLE) originally proposed by the engineering community for smooth-wall boundary layer applications. To be adopted for atmospheric applications, the TBLE approach is modified to account for the surface roughness. The implementation of TBLE into CM1 is evaluated using LES results of an idealized, neutral atmospheric boundary layer. LES runs are then performed for an idealized tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. The semi-slip boundary condition, by design, always yields a surface shear stress opposite the horizontal wind at the lowest LES grid level. The nonequilibrium approaches of modeling near-surface turbulence allow for a range of surface-shear-stress directions and enhance the resolved turbulence and wind gusts. The TBLE approach even occasionally permits kinetic energy backscatter from unresolved to resolved scales. Significance Statement The traditional approach of modeling the near-surface turbulence is not suitable for a tornado characterized by rapid evolution, strongly curved air parcel trajectories, and substantial horizontal heterogeneities. To understand the influence of statistically unsteady and horizontally heterogeneous near-surface conditions on tornadoes, this work adopts a fairly sophisticated approach from the engineering community and implements it into a widely used atmospheric model with necessary modifications. Compared to the traditional approach, the newly implemented approach produces more turbulent near-surface winds, more flexible surface-drag directions, and stronger wind gusts. These findings suggest a simulated tornado is very sensitive to the modeling approach of near-surface turbulence. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Abstract

    Spatial patterns of tropical cyclone tornadoes (TCTs), and their relationship to patterns of mesoscale predictors within U.S. landfalling tropical cyclones (LTCs) are investigated using multicase composites from 27 years of reanalysis data (1995–2021). For 72 cases of LTCs with wide-ranging TC intensities at landfall, daytime TCT frequency maxima are found in the northeast, right-front, and downshear-right quadrants when their composites are constructed in ground-relative, TC-heading relative, and environmental shear relative coordinates, respectively. TCT maxima are located near maxima of 10-m–700-hPa bulk wind difference (BWD), which are enhanced by the TC circulation. This proxy for bulk vertical shear in roughly the lowest 3 km is among the best predictors of maximum TCT frequency. Relative to other times, the position of maximum TCT frequency during the afternoon shifts ∼100 km outward from the LTC center toward larger MLCAPE values. Composites containing the strongest LTCs have the strongest maximum 10-m–700-hPa and 10-m–500-hPa BWDs (∼20 m s−1) with nearby maximum frequencies of TCTs. Corresponding composites containing weaker LTCs but still many TCTs, had bulk vertical shear values that were ∼20% smaller (∼16 m s−1). Additional composites of cases having similarly weak average LTC strength at landfall, but few or no TCTs, had both maximum bulk vertical shears that were an additional ∼20% lower (∼12 m s−1) and smaller MLCAPE. TCT environments occurring well inland are distinguished from others by having stronger westerly shear and a west–east-oriented baroclinic zone (i.e., north–south temperature gradient) that enhances mesoscale ascent and deep convection on the LTC’s east side.

     
    more » « less
  3. Abstract

    Populated urban areas along many coastal regions are vulnerable to landfalling tropical cyclones (TCs). To the detriment of surface parameterizations in mesoscale models, the complexities of turbulence at high TC wind speeds in urban canopies are presently poorly understood. Thus, this study explores the impacts of urban morphology on TC-strength winds and boundary layer turbulence in landfalling TCs. To better quantify how urban structures interact with TC winds, large-eddy simulations (LESs) are conducted with the Cloud Model 1 (CM1). This implementation of CM1 includes immersed boundary conditions (IBCs) to represent buildings and eddy recycling to maintain realistic turbulent flow perturbations. Within the IBCs, an idealized coastal city with varying scales is introduced. TC winds impinge perpendicularly to the urbanized coastline. Numerical experiments show that buildings generate distinct, intricate flow patterns that vary significantly as the city structure is varied. Urban IBCs produce much stronger turbulent kinetic energy than is produced by conventional surface parameterizations. Strong effective eddy viscosity due to resolved eddy mixing is displayed in the wake of buildings within the urban canopy, while deep and enhanced effective eddy viscosity is present downstream. Such effects are not seen in a comparison LES using a simple surface parameterization with high roughness values. Wind tunneling effects in streamwise canyons enhance pedestrian-level winds well beyond what is possible without buildings. In the arena of regional mesoscale modeling, this type of LES framework with IBCs can be used to improve parameters in surface and boundary layer schemes to more accurately represent the drag coefficient and the eddy viscosity in landfalling TC boundary layers.

    Significance Statement

    This is among the first large-eddy simulation model studies to examine the impacts of tropical cyclone–like winds around explicitly resolved buildings. This work is a step forward in bridging the gap between engineering studies that use computational fluid dynamics models or laboratory experiments for flow through cities and mesoscale model simulations of landfalling tropical cyclones that use surface parameterizations specialized for urban land use.

     
    more » « less
  4. null (Ed.)
    Abstract This study examines how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via downdraft ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS. A strong, positive, linear relationship exists between the low-level vertical mass flux in the inner core and TC intensity. The linear increase in vertical mass flux with intensity is not due to an increased strength of upward motions but, instead, is due to an increased areal extent of strong upward motions ( w > 0.5 m s −1 ). This relationship suggests physical processes that could influence the vertical mass flux, such as downdraft ventilation, influence the intensity of a TC. The azimuthal asymmetry and strength of downdraft ventilation is associated with the vertical tilt of the vortex: downdraft ventilation is located cyclonically downstream from the vertical tilt direction and its strength is associated with the magnitude of the vertical tilt. Importantly, equivalent potential temperature of parcels associated with downdraft ventilation trajectories quickly recovers via surface fluxes in the subcloud layer, but the areal extent of strong upward motions is reduced. Altogether, the modulating effects of downdraft ventilation on TC development are the downward transport of low–equivalent potential temperature, negative-buoyancy air left of shear and into the upshear semicircle, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development. 
    more » « less
  5. null (Ed.)
    Abstract This study demonstrates how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via radial ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS environments. Two radial ventilation structures are documented. The first structure is positioned in a similar region as rainband activity and downdraft ventilation (documented in Part I) between heights of 0 and 3 km. Parcels associated with this first structure transport low–equivalent potential temperature air inward and downward left of shear and upshear to suppress convection. The second structure is associated with the vertical tilt of the vortex and storm-relative flow between heights of 5 and 9 km. Parcels associated with this second structure transport low–relative humidity air inward upshear and right of shear to suppress convection. Altogether, the modulating effects of radial ventilation on TC development are the inward transport of low–equivalent potential temperature air, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development. 
    more » « less
  6. Abstract

    This study investigates the effects of resolved deep convection on tropical rainfall and its multi‐scale variability. A series of aquaplanet simulations are analyzed using the Model for Prediction Across Scales‐Atmosphere with horizontal cell spacings from 120 to 3 km. The 3‐km experiment uses a novel configuration with 3‐km cell spacing between 20°S and 20°N and 15‐km cell spacing poleward of 30°N/S. A comparison of those experiments shows that resolved deep convection yields a narrower, stronger, and more equatorward intertropical convergence zone, which is supported by stronger nonlinear horizontal momentum advection in the boundary layer. There is also twice as much tropical rainfall variance in the experiment with resolved deep convection than in the experiments with parameterized convection. All experiments show comparable precipitation variance associated with Kelvin waves; however, the experiment with resolved deep convection shows higher precipitation variance associated with westward propagating systems. Resolved deep convection also yields at least two orders of magnitude more frequent heavy rainfall rates (>2 mm hr−1) than the experiments with parameterized convection. A comparison of organized precipitation systems demonstrates that tropical convection organizes into linear systems that are associated with stronger and deeper cold pools and upgradient convective momentum fluxes when convection is resolved. In contrast, parameterized convection results in more circular systems, weaker cold pools, and downgradient convective momentum fluxes. These results suggest that simulations with parameterized convection are missing an important feedback loop between the mean state, convective organization, and meridional gradients of moisture and momentum.

     
    more » « less
  7. In tropical cyclones (TCs), the peak wind speed is typically found near the top of the boundary layer (approximately 0.5–1 km). Recently, it was shown that in a few observed TCs, the wind speed within the eyewall can increase with height within the midtroposphere, resulting in a secondary local maximum at 4–5 km. This study presents additional evidence of such an atypical structure, using dropsonde and Doppler radar observations from Hurricane Patricia (2015). Near peak intensity, Patricia exhibited an absolute wind speed maximum at 5–6-km height, along with a weaker boundary layer maximum. Idealized simulations and a diagnostic boundary layer model are used to investigate the dynamics that result in these atypical wind profiles, which only occur in TCs that are very intense (surface wind speed > 50 m s−1) and/or very small (radius of maximum winds < 20 km). The existence of multiple maxima in wind speed is a consequence of an inertial oscillation that is driven ultimately by surface friction. The vertical oscillation in the radial velocity results in a series of unbalanced tangential wind jets, whose magnitude and structure can manifest as a midlevel wind speed maximum. The wavelength of the inertial oscillation increases with vertical mixing length lin a turbulence parameterization, and no midlevel wind speed maximum occurs when lis large. Consistent with theory, the wavelength in the simulations scales with (2 K/ I)1/2, where K is the (vertical) turbulent diffusivity, and I2is the inertial stability. This scaling is used to explain why only small and/or strong TCs exhibit midlevel wind speed maxima.

     
    more » « less
  8. Abstract

    Kilometer‐scale grid spacing is increasingly being used in regional numerical weather prediction and climate simulation. This resolution range is in the terra incognita, where energetic eddies are partially resolved and turbulence parameterization is a challenge. The Smagorinsky and turbulence kinetic energy 1.5‐order models are commonly used at this resolution range, but, as traditional eddy‐diffusivity models, they can only represent forward‐scattering turbulence (downgradient fluxes), whereas the dynamic reconstruction model (DRM), based on explicit filtering, permits countergradient fluxes. Here we perform large‐eddy simulation of deep convection with 100‐m horizontal grid spacing and use these results to evaluate the performance of turbulence schemes at 1‐km horizontal resolution. The Smagorinsky and turbulence kinetic energy 1.5 schemes produce large‐amplitude errors at 1‐km resolution, due to excessively large eddy diffusivities attributable to the formulation of the squared moist Brunt‐Väisälä frequency (). With this formulation in cloudy regions, eddy diffusivity can be excessively increased in “unstable” regions, which produce downward (downgradient) heat flux in a conditionally unstable environment leading to destabilization and further amplification of eddy diffusivities. A more appropriate criterion based on saturation mixing ratio helps eliminate this problem. However, shallow clouds cannot be simulated well in any case at 1‐km resolution with the traditional models, whereas DRM allows for countergradient heat flux for both shallow and deep convection and predicts the distribution of clouds and fluxes satisfactorily. This is because DRM employs an eddy diffusivity model that is dynamically adjusted and a reconstruction approach that allows countergradient fluxes.

     
    more » « less